If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-12x-9=0
a = 7; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·7·(-9)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{11}}{2*7}=\frac{12-6\sqrt{11}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{11}}{2*7}=\frac{12+6\sqrt{11}}{14} $
| 2(6+x)=320 | | C=18n+13 | | 48=10u-2u | | 48=0u-2u | | f-77/2=7 | | 6x+7+7x-8=90 | | 7f+7=5f+22 | | 49+2e+7=180 | | 8(x+85=9x | | 72=5w | | 5(x-4)^2=45 | | x^-4=16^3 | | 880=1024-16t^2 | | x+0.4x=70 | | 3(2x-1)=x^2+10 | | 64+2x+14+6x+14=180 | | 12w-20=5w+15 | | 6m-12=18 | | x/5=27/5 | | 2x10=5x | | 3(2x-5)-2(5x-8)=9x | | 3x=6=48 | | 2x-99=601 | | 2.33/x=1.5 | | 2x+99=601 | | (4-2x)^2=272 | | 2x+74=724 | | 2x-74=724 | | 3(2x-6)=9x-19 | | 3x+x=380 | | (-5-2i)=(3+7i) | | (-5-2i)(3+7i)=0 |